From Object Algebras to Finally Tagless Interpreters

by oleksandrmanzyuk

Last Saturday I gave a talk at kiev::fprog meetup. I really enjoyed the event, and taking the opportunity I would like to thank Vladimir Kirillov for organizing it.

The slides of the talk can be found here, but I thought I would also write it up in a blog post.

1 Overview

I am going to describe two design patterns, “object algebras” and “finally tagless interpreters”, developed by the object-oriented and functional communities to solve the expression problem. I hope my presentation will serve as a hands-on, down-to-earth introduction to both patterns, but more importantly I am going to argue that they are really implementations of the same idea.

The plan is as follows. First, we are going to recall what the expression problem is about. Then, I will introduce object algebras and we will see how they help to solve the expression problem. Finally, we will see that the Java code for object algebras admits a pretty natural translation to Haskell, which will lead us to the finally tagless encoding.

2 Expression Problem

We begin by discussing the expression problem. To this end, we will use a classic example known as “Hutton’s Razor”. It is a language of simple arithmetic expressions built up from integer literals using the addition operation +. In Haskell, expressions in this language are described by the following algebraic data type Exp:

data Exp = Lit Int | Add Exp Exp

For example, the expression (1 + (2 + 3)) is represented in Haskell as follows:

e1 = Add (Lit 1)
         (Add (Lit 2)
              (Lit 3))

The function eval takes an expression as an argument and returns its integer value:

eval :: Exp -> Int
eval (Lit n)   = n
eval (Add x y) = eval x + eval y

This is a minimal setup that we will try to extend in various ways.

Suppose that we want to add a function view that converts an expression to a string, its textual representation. This is fairly straightforward:

view :: Exp -> String
view (Lit n)   = show n
view (Add x y) = "(" ++ view x ++ " + " ++ view y ++ ")"

If, however, we decide to extend our language with the multiplication operation *, we have to introduce a new constructor Mul in the definition of the data type Exp, which entails adding a new case to every function defined on Exp.

Java, as well as many other object-oriented languages, doesn’t have algebraic data types and the standard object-oriented approach to this problem is different.

To wit, one defines an interface (or an abstract class) Exp of expressions, which is implemented (or subclassed) by concrete classes Lit and Add representing different types of expressions:

interface Exp {
    int eval();

class Lit implements Exp {
    int n;
    int eval() { return n; }

class Add implements Exp {
    Exp x, y;
    int eval() { return x.eval() + y.eval(); }

For the sake of brevity, from now on I will omit access modifiers and constructor definitions in Java code.

The operation eval is defined as a method of the interface Exp, and the concrete classes Lit and Add implement this method.

In order to add the multiplication operation, it suffices to define a new class Mul that implements the interface Exp:

class Mul implements Exp {
    Exp x, y;
    int eval() { return x.eval() * y.eval(); }

Note that we don’t need to touch the classes Lit and Add.

However, it is rather awkward to add new operations as we need to add new methods to the interface Exp, which is going to break all its concrete implementations.

We see that the functional and object-oriented paradigms are in some sense dual to each other. There is a standard way to visualize this duality.

Consider a rectangular table whose columns are labeled by operations and whose rows are labeled by expression types, and the cell at the intersection of given column and row contains a definition of the corresponding operation for the corresponding expression type.


In the functional approach, the definitions in the table are grouped by columns. A column corresponding to an operation represents a function containing definitions of that operation for all types of expressions. The table is naturally extensible in the dimension of operations: adding a new operation is easy and corresponds to adding a new function, i.e., a new column. Extensibility in the dimension of expression types is problematic: adding a new expression type is hard as it corresponds to adding a new row crossing all columns, and every intersection is a new case that has to be added to the corresponding function definition.


In the object-oriented approach, the definitions are grouped by rows. A row corresponding to a given expression type represents a class containing definitions of all operations for that type. One of the promises of the object-oriented programming is painless extensibility in the direction of expression types. Indeed, adding a new expression type is easy in the object-oriented approach and corresponds to adding a new class, i.e., a new row to the table. Adding a new operation is hard as it corresponds to adding a new column crossing all rows, and every intersection is a new method definition that has to be added to each of the existing classes.


Can we achieve extensibility in both dimensions without loss of static guarantees and without having to modify existing code? That is the essence of the expression problem.

3 Object Algebras

Object algebras is a relatively new object-oriented design pattern for solving the expression problem. It has been introduced in the paper “Extensiblity for the Masses”. What makes it attractive is that it is a relatively lightweight pattern that doesn’t require fancy language extensions. In particular, it can be easily implemented in mainstream languages like Java and C#. Let us see how.

We begin again by considering the language containing only literals and addition. It is going to be described by an interface

interface ExpAlg<T> {
    T lit(int n);
    T add(T x, T y);

If you are familiar with GoF design patterns, you may recognize this as the Visitor interface. However, in this approach this interface is going to play a completely different role. Namely, in terms of GoF design patterns ExpAlg<T> is an interface of an abstract factory for creating expressions.

For example, the expression (1 + (2 + 3)) is represented as follows:

<T> T e1(ExpAlg<T> f) {
    return f.add(

That is, it is represented as a function taking as an argument an object f implementing the interface ExpAlg<T> (i.e., a concrete factory) and returning a value of type T. The body of the function simply calls the methods lit and add of the factory f in a suitable order with suitable arguments.

This representation allows us to vary the concrete factory f thus interpreting the expression e1 in different ways.

Let us see how this works in the case of evaluation of expressions.

First of all, we introduce an interface Eval of “objects that can be evaluated”:

interface Eval { int eval(); }

Next we define a concrete factory EvalExp, which is going to manufacture expression that can be evaluated:

class EvalExp implements ExpAlg<Eval> {
    Eval lit(final int n) {
        return new Eval() {
            int eval() {
                return n;
    Eval add(final Eval x, final Eval y) {
         return new Eval() {
             int eval() {
                 return x.eval() + y.eval();

We can now pass an instance of the factory EvalExp into the expression e1 and get back an object that has a method eval. We can call this method and convince ourselves that it returns the right value:

int v1 = e1(new EvalExp()).eval();

We shall soon see another example of defining operations, but first let us think how we could add multiplication to our language.

We could add a new method mul to the interface ExpAlg<T>, but then the implementation of the concrete factory EvalExp would require changes, which is precisely what we would like to avoid.

Instead, we introduce a new interface MulAlg<T> that extends the interface ExpAlg<T> and adds a new method mul to it:

interface MulAlg<T> extends ExpAlg<T> {
    T mul(T x, T y);

Expressions containing multiplication are now going to be represented as functions taking as an argument objects implementing the extended interface MulAlg<T>. For example, the expression (4 * (5 + 6)) will be represented as follows:

<T> T e2(MulAlg<T> f) {
    return f.mul(

To extend the implementation of evaluation of expressions to expressions containing multiplication we define a new concrete factory EvalMul that implements the interface MulAlg<Eval> and inherits from the factory EvalExp implementations of the methods lit and add:

class EvalMul extends EvalExp implements MulAlg<Eval> {
    Eval mul(final Eval x, final Eval y) {
        return new Eval() {
            int eval() {
                return x.eval() * y.eval();

We can now pass an instance of the factory EvalMul into the expression e2, get back an object that can be evaluated, and compute its value by calling the eval method:

int v2 = e2(new EvalMul()).eval();

Note that we are not touching any existing code: we are defining new interfaces and classes and use inheritance to avoid duplication.

Let us consider an example of adding a new operation and convince ourselves that it doesn’t require touching existing code either.

We introduce an interface View of “object that can be converted to a string”:

interface View { String view(); }

We then define concrete factories ViewExp and ViewMul implementing the interfaces ExpAlg<View> and MulAlg<View>:

class ViewExp implements ExpAlg<View> {
    View lit(final int n) {
        return new View() {
            String view() {
                return Integer.toString(n);
    View add(final View x, final View y) {
        return new View() {
            String view() {
                return "(" + x.view() + " + " + y.view() + ")";

class ViewMul extends ViewExp implements MulAlg<View> {
    View mul(final View x, final View y) {
        return new View() {
            String view() {
                return "(" + x.view() + " * " + y.view() + ")";

Notice that we have a choice: to define conversion to a string only for expression containing literals and addition or also for expressions containing multiplication. In the latter case, the class ViewMul inherits from ViewExp the methods responsible for conversion of literals and addition and adds a definition of conversion of multiplication, thereby implementing the interface MulAlg<View>.

We can now pass these factories into the expressions e1 and e2, get back objects supporting the method view, and convince ourselves that this method returns the right values:

String s1 = e1(new ViewExp()).view();
String s2 = e2(new ViewMul()).view();

A few words about the terminology. The abstract factory interface ExpAlg<T> is called an object algebra interface and concrete factories implementing it are called object algebras. The terminology and the approach in general are inspired by abstract algebra, in which algebraic structures (or simply algebras) are described by signatures. A signature acts as an interface that specifies the types of operations defined on the underlying set of an algebraic structure, and an algebra provides concrete definitions of those operations and is similar to a class implementing an interface.

4 Finally Tagless

We now translate the above example from Java to Haskell and arrive at essentially the finally tagless approach.

This approach has been introduced in the paper “Finally Tagless, Partially Evaluated”. It enjoys many interesting properties, but we are only going to focus on how it helps us to solve the expression problem.

First, we consider how expressions are represented in the finally tagless approach.

The Haskell counterpart of the interface ExpAlg<T> in Java is a typeclass ExpAlg:

class ExpAlg t where
    lit :: Int -> t
    add :: t -> t -> t

The expression (1 + (2 + 3)) is represented as follows:

e1 = add (lit 1)
         (add (lit 2)
              (lit 3))

and its inferred type ExpAlg t => t can be read as a statement that the term e1 can be given any type t as long as t is an instance of the typeclass ExpAlg, i.e., supports the operations lit and add.

What is remarkable is that at the stage of desugaring the typeclass ExpAlg is translated into a record type with fields lit and add, instance declarations of ExpAlg are translated into record values of this type, and the expression e1 is translated into a function taking as an argument a record value corresponding to an instance declaration of ExpAlg for a given type t. This record value is a direct analog of the concrete factory f in Java.

The difference between Haskell and Java is that in Haskell for every pair of a typeclass and a type there can be at most one instance declaration, and once this instance declaration is defined, it remains implicitly in the scope and is passed around automatically by the compiler. In Java, there can be many implementations of a given generic interface instantiated with a given type, and these implementation are entities in the program that have names and have to be passed around explicitly.

To understand how operations are defined in the finally tagless approach, let us look again at evaluation of expressions. We are going to simplify the Java implementation first to make translation to Haskell more obvious.

Namely, we observe that we don’t have to make Eval an interface, although conceptually this is cleaner. After all, if all we know about an object is that it implements the interface Eval, then all we can do with this object is to call the method eval. Therefore, for an external observer such an object is practically indistinguishable from an object of a class Eval with a public field eval of type int. With this change, the definition of the factory EvalExp becomes:

class Eval { public int eval; }

class EvalExp implements ExpAlg<Eval> {
    Eval lit(int n) {
        return Eval(n);
    Eval add(Eval x, Eval y) {
        return Eval(x.eval + y.eval);

To evaluate the expression e1 we pass it an instance of the class EvalExp, which produces an object of the class Eval, which we can ask the value of its field eval:

int v1 = e1(new EvalExp()).eval;

The class Eval is a wrapper around the type int. In Haskell, we introduce a wrapper Eval around the type Int implemented, say, as a newtype:

newtype Eval = Eval { eval :: Int }

The definition of the class EvalExp translates into an instance declaration of the typeclass ExpAlg for the type Eval:

instance ExpAlg Eval where
    lit n   = Eval n
    add x y = Eval $ eval x + eval y

To evaluate the expression e1 we restrict its type ExpAlg t => t to Eval, which is similar to applying the expression e1 to the concrete factory EvalExp in Java, and then the obtained value of type Eval can be queried the value of the field eval:

v1 = eval (e1 :: Eval)

In fact, we don’t have to explicitly restrict the type of e1 to Eval as the compiler will infer this automatically from the fact that e1 is passed as an argument to the function eval :: Eval -> Int.

In Java, extension of the language with the multiplication operation corresponded to extension of the interface ExpAlg<T> to MulAlg<T> with the method mul. In Haskell, this translates into a definition of a new typeclass MulAlg that is a subclass of ExpAlg:

class ExpAlg t => MulAlg t where
    mul :: t -> t -> t

Expressions containing multiplication will now have the type MulAlg t => t, for example:

e2 = mul (lit 4)
         (add (lit 5)
              (lit 6))

To extend the definition of the operation eval, we perform the same transformation as above: we replace the interface Eval with a class Eval with a public field of type int. Then the definition of the class EvalMul implementing the interface MulAlg<Eval> translates in Haskell into a definition of an instance declaration of the typeclass MulAlg for the type Eval:

instance MulAlg Eval where
    mul x y = Eval $ eval x * eval y

Finally, we consider an example of adding new operations in the finally tagless approach. Let us implement conversion to string.

We transform the object algebras implementation of conversion in Java similarly to what we did to the implementation of evaluation: we replace the interface View with a class View with a public field view of the type String. Then in Haskell this all is going to turn into an instance declaration of the typeclass ExpAlg for a type View that is a newtype wrapper around String:

newtype View = View { view :: String }

instance ExpAlg View where
    lit n   = View $ show n
    add x y = View $ "(" ++ view x ++ " + " ++ view y ++ ")"

Extension of the operation view to expressions containing multiplication is done similarly and amounts to defining an instance declaration of the typeclass MulAlg for the type View:

instance MulAlg View where
    mul x y = View $ "(" ++ view x ++ " * " ++ view y ++ ")"

The encoding we have arrived at is almost identical to that proposed in “Finally Tagless, Partially Evaluated”. The difference is that in Haskell there is no need to make MulAlg a subclass of ExpAlg: we can define it as a separate typeclass:

class MulAlg t where
    mul :: t -> t -> t

and then expressions containing multiplication will be represented by values of the type (ExpAlg t, MulAlg t) => t. This gives us more flexibility because we can represent different language extensions as separate typeclasses that can be arbitrarily combined.